VIETNAM NATIONAL UNIVERSITY - HCMC HCMC UNIVERSITY OF TECHNOLOGY

SUBJECT SYLLABUS FOR MASTER-LEVEL PROGRAMS

Discipline		Computer Science
Faculty		Faculty of Computer Science and Engineering
Department Department of Computer Science		Department of Computer Science
Subject Name		Advanced Algorithms
Subject Code (CO5115
Prerequisites		
Corequisites		
Credits		3
ECTS		6
Study Hours	(Total)	75
	(Lecture)	30
	(Tutorial)	45
	(Lab)	0
	(Others)	

1. OBJECTIVES

The lecture aim is to provide student analysis and design of algorithms. Topics include: dynamic programming, greedy, approximation for NP-complet decision problems.

2. DESCRIPTION

- Elementary analysis
- Red-black tree, algorithms on graph theory
- NP definition
- Greedy heuristics
- Dynamic programming & approximation scheme
- Other advance topics

3. TEXTBOOKS AND COURSE MATERIALS

- [1] Thomas H. Cormen& Charles E. Leiserson& Ronald L. Rivest& Clifford Stein, Introduction to algorithms, 3rd ed., Massachusetts Institute of Technology Press, 2009.
- [2] Steven S. Skiena, The algorithm design manual, 2nd ed., Springer-Verlag London, 2008.
- [3] Jon Kleinberg& Eva Tardos, Algorithm design, Pearson Education Addison Wesley, 2005.

- [4] Vijay V. Vazirani, Approximation Algorithms, 3rd ed., Springer, 2003.
- [5] Shimon Even & Guy Even, Graph algorithms, 2nd ed., Cambridge University Press, 2012.
- [6] RichardBird, Pearls of functional algorithm design, Cambridge University Press, 2010.
- [7] Mehlhorn&Naeher, The LEDA Platform of Combinatorial and Geometric Computing, Cambridge University Press, 1999.
- [8] M.R. Garey& D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, W.H. Freeman & Co 1990
- [9] Phan Thanh An, Le Hong Trang, Hình học tính toán -- Các thuật toán cơ bản và Thực thi, Nhà xuất bản Đại học Vinh, 2018
- [10] Phan Thanh An, Optimization Approaches for Computational Geometry, Nhà xuất bản Khoa học Tự nhiên và Công nghệ, Viện Hàn lâm Khoa học và Công nghệ Quốc gia, ISBN: 978-604-913-573-6. 2017.

4. LEARNING OUTCOMES

Knowledge: understand advanced algorithms

Cognitive Skills: apply advanced algorithms

Subject Specific Skills: analyse advanced algorithms

Transferable Skills: design algorithms

5. ASSESMENT

6. COURSE OUTLINE

Weeks	Topics	Activities	Readings
1	Introduction to algorithm design and analysis	The role of algorithm in computing Elementary analysis Solving recurrence	
2	Data structures for sorting & searching problems	List Tree Hash	
3-4	Graph theory	Graph traversal Shortest path problem Network flow problem	

Weeks	Topics	Activities	Readings
5	NP and computational intractability	Polynomial-time reductions Reductions via "Gadgets": the Satisfiability Problem Efficient certification and the Definition of NP NP-complete problems Sequencing problems Partitioning Problems Numerical Problem Co-NP and the Asymmetry of NP A partial taxonomy of hard problem	
6-7	Greedy algorithms & Heuristic methods	Introduction Sample problems Exercise	
10	Exact methods	Exact method introduction Lower/ Upper bounds	
11	Dynamic programming	Dynamic programming Approximation algorithms	
12	Advance topics		

7. INSTRUCTORS (at least 2 instructors)

Assoc Prof. Dr HUYNH TUONG NGUYEN (Principal	Prof. Dr HUYNH TUONG NGUYEN (Princ	ipal)
--	------------------------------------	-------

Assoc Prof. Dr TRAN VAN HOAI

	<i>HCMC</i> ,
Department	Instructor

Assoc Prof. Dr PHAM HOANG ANH